





# Getting started with EVA v 3.0

Software written by Peer Berg

Program to select mating set with optimal contributions & to maximise function of merit and relationships. Optionally minimises inbreeding conditional on genetic contributions.

## Disclaimer

The free software program EVA may be freely distributed, provided that no charge above the cost of distribution is levied, and that the disclaimer below is always attached to it.

The program is provided as is without any guarantees or warranty.

Although the authors have attempted to find and correct any bugs in the free software program, the authors is not responsible for any damage or losses of any kind caused by the use or misuse of the program.

It will be our aim to correct any bugs reported as well as providing regular updates. But the author is under no obligation to provide support, service, corrections, or upgrades to the free software programs.

To receive information on updates, send an e-mail to Peer Berg: mailto:Peer.Berg@nmbu.no?subject=Information on updates







# **Table of Contents**

| Quick start                             |    |
|-----------------------------------------|----|
| What can EVA do for me?                 | 3  |
| Installation                            | 3  |
| Windows                                 |    |
| Mac OS X                                |    |
| Linux                                   |    |
| Running EVA                             | 3  |
| Running EVA using R                     | 4  |
| Input files                             | 4  |
| Data input file - mandatory             | 4  |
| EVA Parameter file - mandatory          | 5  |
| Overview of Parameters                  | 6  |
| &DataParameters                         |    |
| &PopulationHistory                      |    |
| &Contribution                           |    |
| &RelationshipMatrix                     |    |
| &OCSParameters                          |    |
| &AlgorithmParameters                    |    |
| &Mating                                 |    |
| Relationship file - optional            |    |
| Tips                                    |    |
| Output files                            | 13 |
| Log file                                |    |
| F summary.txt                           |    |
| f_coeff.txt                             |    |
| max_gc.txt                              |    |
| gen_cont.txt                            |    |
|                                         |    |
| eva_MatingList.txt                      | 15 |
| male_list.txt                           |    |
| Candidates.txt                          |    |
| Optional output files                   | 17 |
| Introduction to Evolutionary Algorithms | 17 |
| Optimisation criteria                   | 19 |
| Citation                                | 19 |







# **Quick start**

## What can EVA do for me?

The EVA software can be used to:

- Describe the history of a population in terms of
  - Individual inbreeding coefficients and completeness of pedigree
  - Average inbreeding, coancestry, pedigree completeness and generation equivalents per cohort
  - Genetic contributions
    - All founders
    - Most contributing ancestors
    - Any user-specified individuals to any individual or cohort
- Optimize genetic contributions
  - o To optimize a linear function of genetic merit and average additive relationships
  - Conditional on optimal contributions to mate individuals randomly or minimizing inbreeding in offspring

## Installation

The software is available for Windows, Linux and Mac OS X.

#### Windows

Use the windows installer to complete the installation.

#### Mac OS X

We recommend to run the following commands in a terminal window, from the bin directory

sudo mkdir -p /usr/local/gfortran/lib

sudo cp libquadmath.0.dylib /usr/local/gfortran/lib/.

sudo cp eva /usr/local/bin/.

These commands are also in the script file install eva, run by typing

```
./install eva
```

#### Linux

The executable needs to be in your path, for example in  $\mbox{usr/local/bin}$  .

## **Running EVA**

EVA is run from the command line.







For Windows, you can open a shell by running the EVA.bat script in the program list.

- An EVA shell is opened by the eva.bat script.
- This opens a shell in which you can run command line arguments.
- Opening a shell via the eva.bat also ensures that the executable is in your path.
- You can change directory to anywhere you want and run EVA.
- You run EVA by typing the command

EVA eva.prm

Where eva.prm is the filename of your parameter file.

The progress will be shown on screen as well as written to the log file.

For a list of useful Windows command line arguments see for example: <u>http://www.digitalcitizen.life/command-prompt-how-use-basic-commands</u>

If the run is aborted with an error, this log file is located in the submission directory. Otherwise it is located in the directory with results files. See ResultsDirectory

#### **Running EVA using R**

Eva can be called by application of global functions. You will find a R-script evaR.R as well as a set of functions evaR\_functions.R together with the material you downloaded with the programme. Use the R-script to load the functions, execute EVA and receive output in your R environment. There are also few examples of plots of your data available. The functions are under development. The current version is tested on Mac OS X and Windows systems.

## **Input files**

For EVA to run it needs a data input file and a parameter file that specifies what the program should do. Optionally the user can supply a relationship file.

#### Data input file - mandatory

The data file has to be a plain ASCII file with the following columns:

| Column        | Short description                                                                               |
|---------------|-------------------------------------------------------------------------------------------------|
| Individual ID | Integer ID for individual                                                                       |
| Sire ID       | Integer ID for sire of individual                                                               |
| Dam ID        | Integer ID for dam of individual                                                                |
| Sex           | Sex of individual (1 if male, 2 if female). Integer.                                            |
|               | Must take values 1 or 2 for individuals that are candidates (where value                        |
|               | of Max.Matings>0). For other individuals, this variable is ignored and can thus take any value. |





| BirthTime     | Time when individual is born. In units of time period. See below for further explanation. Integer                                                                                                  |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MaxMatings    | Maximum number of matings for this individual. The value 0 indicates that the individual is unavailable as a candidate for selection. Integer.                                                     |
| BreedingValue | Genetic merit/Predicted breeding value, e.g. BLUP of individuals breeding value. Real.                                                                                                             |
| Text          | <b>Optional</b> field with a text string of up to 15 characters to be printed in the mating list. Can be any combination of letters and numbers used for additional identification of individuals. |

The file contains no headers and the columns are space- or tab-separated.

*IDs* must be standard integers in the interval -2,147,483,648 (two billion....) to 2,147,483,647. These IDs are internally recoded from 1 to number of individuals. These recoded IDs can be written to a file.

Generally, all individuals should be included in the file. Individuals must be in the file prior to their offspring. Parents that do not show up in the file as individuals, can be inserted by the program depending on what the parameter *IgnoreParentalPedigreeErrors* is set to (see below).

*BirthTime* is the time of birth (cohort/timestep) of the individual. These should be specified such that parent and offspring are not born in the same cohort. They should be consecutive, in increments of 1. Founders are all individuals for which no parental information is given.

If *maxage* is the maximal age (in timesteps) of a parent, the data file should have complete records of parent contributions in the last maxage+1 time period. This means that there should be records for all individuals born in the last maxage+1 time period. This is required to compute past contributions in cases with overlapping generations.

It is advantageous (for computational efficiency) that the number of time steps are minimized. This means that in for example cattle and horses a time step of 1 year is natural, in pigs 6 months, and in fish 3 or 4 years depending on time of sexual maturation.

The program assumes that individuals from matings to be planned will be born at a time step advanced by 1 relative to the maximal value observed in the data.

## EVA Parameter file - mandatory

The parameter file gives directives to EVA on what to do. Most parameters have default values, which are used if not specified otherwise in the parameter file.

An example parameter file with comments is provided in the documentation folder, where this manual can also be found. Use the example parameter file as a starting point and delete and modify the parameters as needed. If you want to insert comments to yourself in the parameter file, you can use the # symbol to tell EVA that the following text is just a comment. Anything on a line starting with # will not be read by EVA.







Parameters are specified in a number of NAMELISTS with parameters for the different parts of the program. The general format for these NAMELISTS is

```
&SECTION
   Parameter1=xxx ,
   Parameter2=yyy ,
   ...
/
```

Where &SECTION is the name of the parameter list, individual parameter and their value are separated by commas, and the parameter list is closed with "/"

If e.g. Parameter 1 is not specified, it will take its default value.

The following list is a short summary of the parameters. Click on the links to get a more detailed description.

| Parameter                                                             | Description                           | Default value |  |
|-----------------------------------------------------------------------|---------------------------------------|---------------|--|
| &DataParameters                                                       |                                       |               |  |
| DataFile                                                              | Filename (and path if not in          | eva.dat       |  |
|                                                                       | directory where EVA is run).          |               |  |
| ResultsDirectory                                                      | Prefix on all results files or        | "EVA_"        |  |
|                                                                       | directory path to where result files  |               |  |
|                                                                       | are placed.                           |               |  |
| IgnoreParentalPedigreeErrors                                          | If .true. or T then parents are       | .false. / F   |  |
|                                                                       | inserted in the pedigree, if not      |               |  |
|                                                                       | found previously.                     |               |  |
| RecodeFile                                                            | Filename for a file containing        | '_null_'      |  |
|                                                                       | original and recoded IDs.             |               |  |
|                                                                       | If RecodeFile is not given a value or |               |  |
|                                                                       | given the value "_null_" no file will |               |  |
|                                                                       | be written.                           |               |  |
| & Population History                                                  |                                       |               |  |
| PCI_ngen                                                              | Number of generations for             | 5             |  |
|                                                                       | computation of Pedigree               |               |  |
|                                                                       | Completeness Index.                   |               |  |
| &Contribution (as many of these NAMELISTS as needed can be specified) |                                       |               |  |







| Ancestor                  | ID of ancestor for whom to             | 0          |
|---------------------------|----------------------------------------|------------|
|                           | compute genetic contributions. If 0    |            |
|                           | it means all founders in the           |            |
|                           | pedigree.                              |            |
|                           |                                        |            |
| Descendant                | ID of descendant whose genetic         | 0          |
|                           | contributions from ancestors are       |            |
|                           | computed.                              |            |
| Group                     | Timesten (BirthTime) for               | 0          |
|                           | individuals for whom the genetic       | •          |
|                           | contributions are computed             |            |
|                           |                                        |            |
| &RelationshipMatrix       |                                        |            |
| Source                    | 'pedigree': compute additive           | 'pedigree' |
|                           | genetic relationships from the         |            |
|                           | pedigree in the data file.             |            |
|                           | (file); read additive genetic          |            |
|                           | relationships from file                |            |
|                           | relationships from me.                 |            |
| GFile                     | Filename.                              | '_null_'   |
|                           | If source='pedigree', then             |            |
|                           | relationships are written to this      |            |
|                           | file, unless it is ' null '.           |            |
|                           |                                        |            |
|                           | If source= file' relationships are     |            |
|                           | read from this file.                   |            |
| TimeSteps                 | Number of timesteps to include. All    | 0          |
|                           | individuals born in the last           |            |
|                           | timesteps will be included in the      |            |
|                           | numerator relationship matrix as       |            |
|                           | well as all their ancestors. If 0 this |            |
|                           | is determined from data by the         |            |
|                           | maximum age of parents.                |            |
|                           | Timesteps<0 ends the program           |            |
|                           | after computing inbreeding and         |            |
|                           | genetic contributions, ignoring        |            |
|                           | request for writing or reading the     |            |
|                           | relationship matrix.                   |            |
|                           |                                        |            |
| <u>&amp;UCSParameters</u> |                                        |            |





| ſ | -F<br>M | в<br>† | J |
|---|---------|--------|---|
| Ν | _       |        |   |

| Nmatings                               | Number of matings to be selected      | -1          |
|----------------------------------------|---------------------------------------|-------------|
|                                        | by Optimal Contribution Selection     |             |
|                                        | (OCS).                                |             |
|                                        |                                       |             |
|                                        | If -1 OCS is aborted.                 |             |
| Ontimise                               | Criterion for optimization possible   | nenalty     |
| optimise                               | values: "nenalty" or "constraint" or  | penarcy     |
|                                        | "merit"                               |             |
|                                        | ment                                  |             |
| Wmerit                                 | Weight on genetic merit               | 0.0         |
|                                        | (estimated breeding value or          |             |
|                                        | index).                               |             |
|                                        |                                       |             |
| Wrelationship                          | Weight on average additive genetic    | -1.0        |
|                                        | relationship of the last generation   |             |
|                                        | including the proposed matings.       |             |
|                                        | Only values $< 0.0$ is accepted       |             |
|                                        |                                       |             |
| dFconstraint                           | Constraint on rate of inbreeding.     | 1.0 (no     |
|                                        | Only read if Optimise="constraint"    | constraint) |
|                                        |                                       |             |
|                                        | This is the constraint on rate of     |             |
|                                        | inbreeding per generation.            |             |
| LimitMaleMatings                       | Males can only be used in a           | 1           |
|                                        | multiplum of the number specified.    |             |
|                                        | If 2 then males can only be used 0,   |             |
|                                        | 2, 4 up to MaxMatings (as             |             |
|                                        | specified in the data for that male). |             |
|                                        | , , ,                                 |             |
| W_nMales <sup>1</sup>                  | The value of each selected males. A   | 0           |
| $^{1}$ not vet available in v3 0       | negative value specifies a cost for   |             |
|                                        | each male selected.                   |             |
| NSelectedMales <sup>1</sup>            | Desired number of selected males      | 0           |
|                                        | 0 results in ontimizing the number    | Ĭ           |
| <sup>1</sup> not yet available in v3.0 | of males lise with caution as sub-    |             |
|                                        | ontimal solutions are generated       |             |
|                                        | optimal solutions are generated.      |             |
| & Algorithm Parameters                 |                                       | •           |
| generations                            | Number of generations the             | 10000       |
| 6                                      | Evolutionary Algorithm is running     |             |
|                                        |                                       |             |







| NGenerationsNoImprovement      | Number of generations without        | 10000          |
|--------------------------------|--------------------------------------|----------------|
| NoenerationsNoimprovement      | improvements, that should stan       | 10000          |
|                                | further iterations                   |                |
|                                | Turtner iterations                   |                |
| PopSize                        | Size of population of solutions that | 100            |
|                                | evolves                              |                |
|                                |                                      |                |
| N_offspring                    | Number of new possible solutions     | 10             |
|                                | produced per generation.             |                |
| Desteut internel               |                                      | 1000           |
| Restart_Interval               | in the best solution has not         | 1000           |
|                                | Improved for this number of          |                |
|                                | generations then more variance is    |                |
|                                | generated by increasing the          |                |
|                                | mutation variance for one            |                |
|                                | generation.                          |                |
| Exchange algorithm             | Interval between using an            | 500            |
|                                | exchange algorithm to iteratively    | 500            |
|                                | exchange algorithm to iteratively    |                |
|                                | optimize solutions.                  |                |
| Mutate_probability             | Probability of mutating an           | 1/(4*Nmatings) |
|                                | individual in a solution (randomly   |                |
|                                | exchanging that individual).         |                |
|                                |                                      |                |
| Crossover_probability          | Probability of crossovers when       | 0.2            |
|                                | generating a new solution from       |                |
|                                | two parental solutions.              |                |
| Directed mutation probability  | Probability of mutating an           | 1/(2*Nmatings) |
| Directed_indtation_probability | individual in a solution (ovchanging | 1/(2 Mindungs) |
|                                | that individual with a better)       |                |
|                                | that multidual with a better).       |                |
| Seed_rng                       | Seed for random number               | 0 (use         |
|                                | generator.                           | computer clock |
|                                |                                      | to sample      |
|                                |                                      | seed)          |
|                                |                                      | ,              |
| &Mating                        |                                      |                |
| MatingsStrategy                | 'mai' : maximum avoidance of         | 'random'       |
|                                | inbreeding. Minimises inbreeding     |                |
|                                | conditional on the optimal genetic   |                |
|                                | contributions.                       |                |
|                                |                                      |                |
|                                | 'random': Individuals selected are   |                |
|                                | mated randomly.                      |                |
|                                |                                      |                |







| RepeatedMatings | If .true. (T) then repeated matings<br>between the same two individuals<br>are allowed.  | .true. |
|-----------------|------------------------------------------------------------------------------------------|--------|
|                 | If .false. (F) then repeated matings<br>between the same two individuals<br>are avoided. |        |

#### &DataParameters

*DataFile* and *RecodeFile* are exhaustively described in the overview table.

#### ResultsDirectory

Specifies either

- A prefix on all results files
- A directory where results files are placed

#### Examples:

#### ResultsDirectory='2012Pig'

Will add a prefix on all result files, such that all files are named 2012Pigxxxx, where xxx indicates the default result file name.

#### ResultsDirectory='.\Pig2012\'

Will place all result files in a subdirectory in the current directory (where EVA is run) named Pig2012. In this subdirectory result files will take their default names.

#### ResultsDirectory='c:\users\mydata\Pig2012\'

Will place all result files in a directory c:\users\mydata\Pig2012. In this directory result files will take their default names.

#### IgnoreParentalPedigreeErrors

If the value is .false. or F (the default) then all parents should also be in the file with their own record. Otherwise an error message is given and the program is aborted.

If the value is .true. or T, then a parent that has not been represented as an individual previously in the file will be inserted. If this parent is then later in a record as an individual, then an error message is given and the program is aborted (the individuals are not sorted properly – parents before offspring).

Use the value .true. with caution.

#### &PopulationHistory

#### PCI\_ngen

Pedigree completeness indexes are computed as described by the following two articles:

Sigurdsson, A. & Jonmundsson, J.V. 1994. Proceedings of the 5th WCGALP, vol 17: 140-143

MacCluer J.W.; Boyce A.J.; Dyke B.; Weitkamp L.R.; Pfennig D.W. & Parsons C.J: 1983. Journal of Heredity 74:394-399







Essentially this is a measurement of the proportion of combinations of maternal-paternal ancestors up to PCI\_ngen generations back, that is known and thus could contribute to the inbreeding coefficient of an individual or group of individuals.

### &Contribution

Any number of NAMELISTs of this type can be specified. They are processed consecutively. Only two of the three parameters can be specified.

Examples:

```
&Contribution
ancestor=10,
descendant=25
/
```

Computes the genetic contribution of 10 to 25 (and the additive relationship between them).

```
&Contribution
ancestor=10,
group=2010
/
```

Computes the genetic contribution of 10 to all individuals born in timestep 2010 as specified in the data file.

```
&Contribution
ancestor=0,
group=2010
/
```

Computes the genetic contribution of all founders (individuals with unknown parents) to all individuals born in timestep 2010 as specified in the data file.

#### &RelationshipMatrix

Individual inbreeding coefficients are computed with the algorithm described in:

*Meuwissen, THE & Luo, Z.; 1992. Computing Inbreeding Coefficients in Large Populations. Genent. Sel. Evol. 24:305-313.* 

Additive genetic relationships and average relationships between groups of individuals are computed with the algorithm proposed by:

*Colleau, J.-J. 2002. An indirect approach to the extensive calculation of relationship coefficients. Genet.Sel.Evol.* 34:409-421

#### &OCSParameters

*NSelectedMales* and *w\_nMales* can be used to control the number of males. Used alone (NSelectedMales=0) w\_nMales specifies the value or cost of selecting males (negative values indicate costs). If NSelectedMales >0 then a number of males deviating from the desired number is penalized by w\_nMales (default 1/(2\*Nmatings)). Avoid too large values of w\_nMales as this negatively







influences convergence. Use this option with caution as it can result in sub-optimal solutions relative to the optimal frontier.

Please not that the options *NSelectedMales* and *w\_nMales* are not available in Version 3.0.

#### &AlgorithmParameters

Be cautious in changing these parameters. It might affect the rate of convergence.

#### &Mating

With EVA, proposals for new matings can be obtained, conditional on the optimized genetic contributions, either:

- a) Mating at random
- b) Mating to minimise inbreeding in the resulting offspring (maximum avoidance of inbreeding mai)

## **Relationship file - optional**

An external relationship file can be provided, containing for example genomic relationships between individuals. See <u>&RelationshipMatrix</u> in the EVA parameter file section for more information.

The format of the relationship file is one line for each (non-zero) element containing

ID<sub>i</sub>: id of individual i in the same form as used in the data file.

ID<sub>j</sub>: id of individual j in the same form as used in the data file.

G<sub>ij</sub>: element of the relationship matrix for individuals i and j.

Symmetry is assumed so  $G_{ij}$  needs only be provided once ( $G_{ji}$  is not required). If provided multiple times (as either  $G_{ij}$  or  $G_{ji}$ ), the last element read will be used.

Diagonal elements have i=j. If a diagonal element is not provided, then the corresponding individual cannot be a candidate. If it is a candidate then MaxMatings=0 will be set for that individual.

A summary of expected vs. realized number of individuals read from the file will be printed.

Off-diagonal elements not read from the file are set to 0. Thus, only non-zero elements need to be specified in the file.

## Tips

- If your think you have detected a bug, please report it
- If the Optimal Contribution Selection is not running as expected or results looks suspicious, start by checking the descriptive statistics. Examples
  - Check that birth times are properly defined
  - Check that pedigrees are complete. A few individuals with incomplete pedigrees can seriously affect the results obtained.
  - Check age profile of candidates.
- Ensuring convergence, see <u>Iteration history</u>







# **Output files**

All output files are in ASCII format and can be opened by a variety of editors, imported into spreadsheet software such as Excel or imported into R, which has good graphical plotting capabilities.

## Log file

EVA prints a log file - eva.log. This gives information on the parameters used, error messages and progress of the computations.

## F\_summary.txt

Summarises information on average inbreeding, coancestry, pedigree completeness and generation equivalents.

Summarises information on the candidates and the best mating set produced.

Contains a list with averages for individuals born in each timestep

- Group Birth time timestep
- N Number of individuals born in this group
- N\_inbred Number of inbred individuals born in this group
- avg.F Average inbreeding coefficient
- max.F Largest inbreeding coefficient
- avg.coa
   Average coancestry incl. self
- exp.F Expected inbreeding under random mating
- Alpha Deviation from random mating
- PCIn Pedigree Completeness Index for n generations
- Gencoef Average generation coefficient. Number of complete generations including the base population.
- GenInt Generation interval. Average age of parents.

Alpha is negative when inbred matings have been avoided, and positive when inbred matings have been favoured. There is a dependence among the parameters such that

## (1-avf.F)=(1-exp.F)(1-alpha)

Alpha thus describes deviations from the level of inbreeding that would have been obtained by random mating, due to the actual matings done.

Contains a summary of the data. If relationships are read from an external file a summary of inbreeding and co-ancestries are printed as well as a summary of the expected and realized number of records read from the file.

Contains a summary of the best mating set found (if run).

Contains a summary of the inbreeding expected in the new cohort after the matings are optimized as specified.

## f\_coeff.txt

A file with one record for each individual in the same format as the input







For each individual its inbreeding coefficient, pedigree completeness and generation equivalent is printed:

| Variable                                          | Description                                                                                                                | Format  |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------|
| Individual ID                                     |                                                                                                                            | integer |
| Parent ID                                         | missing=0                                                                                                                  | integer |
| Other parent ID                                   | missing=0                                                                                                                  | integer |
| Sex                                               | 1: males, 2: females                                                                                                       | 1 or 2  |
| Birth_time                                        | Birth year code or equivalent from input file)                                                                             | Integer |
| Inbreeding coefficient                            | real between 0 and 1                                                                                                       | real    |
| Generation coefficient                            | Generation equivalent is 1 for<br>founders and updates with one<br>for complete each generation<br>away from the founders. | real >1 |
| Pedigree Completeness Index<br>n generations back | n specified by the user                                                                                                    |         |

#### max\_gc.txt

A list of ancestors with the 50 largest genetic contributions to the last cohort in the data (individuals born in the last timestep). Genetic contributions are not corrected for the contributions of other ancestors and thus sums to more than 1.

## gen\_cont.txt

A list of genetic contributions and additive genetic relationships

- of founders (individuals with unknown parents) to the last cohort in the data (individuals born in the last timestep).
- Of any combinations asked for by the &Contribution namelist

Note: When genetic contributions of founders are written, individuals are marked as either "founder" or "½ founder". Founders are individuals with both parents unknown. ½ founders are individuals with one parent unknown. Such individuals are only considered half a founder and the genetic contribution is only half its contribution, reflecting the contribution of its unknown parent. This is done to ensure that genetic contributions of founders sum to 1. This also implies that if you ask specifically for the contribution of such an individual you will get its full genetic contribution. The additive genetic relationship is not affected by founder status.







#### Eva\_conv.txt & Eva\_best.txt

The iteration history of the Evolutionary Algorithm is written to two files

Eva\_conv.txt Gives convergence of the population of solutions

Eva\_best.txt Gives information on the evolution of the best solution

These files give indications whether EVA has converged to the optimal solution. If the best solution is found in a recent generation, then there is reason to believe that the algorithm might not yet have converged.

Generally, the convergence follows a pattern where initially there are large improvements in the current best population, but these improvements get gradually smaller, meaning that after a few generations the current best solution is likely close to the optimal solution.

To test convergence two approaches can be used, either separately or preferably in combination.

- 1. Run EVA with a large number of generations (parameter Generations in Namelist &AlgorithmParameters).
- 2. Run several independent runs and compare results. If they differ then the algorithm has not converged, and parameter Generations should be increased.

Generally, convergence is specific to the data structure. So once a conservative value for Generations has been found, this value can be used in data with the same structure, such as running the same data with different constraints on inbreeding.

#### eva\_MatingList.txt

The first line in the mating list is the header: 'Sire','Dam','N.mating','Nm','Nf.m.','EBV','F','vF','Sire txt','Dam txt'. A short description of the columns is given below.

| Variable | Description                                                             | Format  |
|----------|-------------------------------------------------------------------------|---------|
| Sire     | Sire id                                                                 | Integer |
| Dam      | Dam id                                                                  | Integer |
| N Mating | Number of mating, numbered from 1 to number of matings                  | Integer |
| Nm       | Mating number for sire                                                  | Integer |
| Nf(m)    | Mating number of dam within sire                                        | Integer |
| EBV      | Estimated Breeding value                                                | Real    |
| F        | Coefficient of inbreeding of offspring from mating between sire and dam | Real    |







| vF        | Mendelian sampling variance factor for<br>offspring, that is mendelian variance is<br>vf*Va, where Va is genetic variance. VF<br>is between 0 and ½ | Real       |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Sire Text | field with an optional text string from the input file                                                                                              | Characters |
| Dam Text  | field with an optional text string from the input file                                                                                              | Characters |

#### male\_list.txt

A list of males, the number of matings per male and the optional information on males (given in the input data file).

| Variable        | Description                                            | Format    |
|-----------------|--------------------------------------------------------|-----------|
| Sire            | Sire id                                                | Integer   |
| N.matings       | Number of matings for sire                             | Integer   |
| Prev.offspr     | Number of offspring in last and previous timesteps     | Integer   |
| Merit           | Genetic merit (breeding value) of candidate            | Real      |
| Rel.males       | Average relationship to male candidates                | Real      |
| Rel.females     | Average relationship to female candidates              | Real      |
| Rel.males.sel   | Average relationship to selected males                 | Real      |
| Rel.females.sel | Average relationship to selected females               | Real      |
| Sire.txt        | Field with an optional text string from the input file | Character |

## Candidates.txt

A list of all candidates, their previous contributions, contributions to the next cohort and their relationships to other candidates.

| Variable | Description  | Format  |
|----------|--------------|---------|
| ID       | Candidate id | Integer |





| ſ | -F<br>M | в<br>† | J |
|---|---------|--------|---|
| Ν | _       |        |   |

| Sex             | Sex of candidate                                       | Integer   |
|-----------------|--------------------------------------------------------|-----------|
| N.matings       | Number of matings for candidate                        | Integer   |
| Prev.offspr     | Number of offspring in last and previous timesteps     | Integer   |
| Merit           | Genetic merit (breeding value) of candidate            | Real      |
| Rel.males       | Average relationship to male candidates                | Real      |
| Rel.females     | Average relationship to female candidates              | Real      |
| Rel.males.sel   | Average relationship to selected males                 | Real      |
| Rel.females.sel | Average relationship to selected females               | Real      |
| Txt             | field with an optional text string from the input file | Character |

## **Optional output files**

In addition, output files are produced if requested in the parameter file

- File with recoded IDs
- File with additive genetic relationships

## **Introduction to Evolutionary Algorithms**

An Evolutionary Algorithm mimics the way natural selection shapes populations by favouring the fittest individuals. Thus, the vocabulary is the same as used in evolutionary genetics.

The principle is that one has a set of possible solutions, called a population. Individual solutions from this population can be evaluated in terms of the criterion that is to be maximized. This gives their fitness. Individuals are then selected to be parents proportional to their fitness. The possible solutions then generate new solutions mixing two parental solutions by recombination. In addition, additional variation is generated by mutation. This generates new offspring that then competes with the parents to survive until the next generation. The probability of survival is proportional to their fitness.

This ensures incremental adaptation relative to the criterion to be maximized. The best solution observed is always maintained in the population.

Evolutionary algorithms are a class of algorithms based on biological evolution. For a thorough description of evolutionary algorithms see:

Michalewicz, Z. 1996. Genetic Algorithms + Data Structures = Evolution Programs. Springer Verlag.





Alternatively, take a look at the Wikipedia entry: http://en.wikipedia.org/wiki/Evolutionary\_algorithm









## **Optimisation criteria**

Genetic contributions that optimise two different criteria can be computed by EVA.

The first (default) criterion is a linear function of genetic merit and average relationship of the last generation of which the next cohort is a part. With discrete generations this simplifies to

 $H_1 = w_{merit} \cdot c \hat{a} + w_{relationship} \cdot c Ac$ 

Here  $w_{merit}$  and  $w_{relationship}$  are input parameters (weights),  $\hat{a}$  is a vector of estimated breeding values (merit) provided in the input data, A is a matrix of relationships based on either

- a) Pedigree, computed from the input data file
- b) Relationships read from file (e.g. genomic relationships)

And c is the vector of genetic contributions that are optimized.

The second criterion maximizes genetic merit conditional on the rate of inbreeding being lower than a specified threshold. With discrete generations this simplifies to

$$H_2 = max\{c \ \hat{a} | c \ Ac < C_t\}$$

where C<sub>t</sub> is a function of the user specified constraint on rate of inbreeding and average co-ancestry in the previous generation. Thus, for both criteria the long-term rate of inbreeding is controlled (penalized or constrained).

With overlapping generations, the above criteria extends to include elements of relationships in and contributions to previous cohorts to account for their contribution to the last generation.

For a more thorough description see:

- Woolliams JA, Berg P, Dagnachew BS and Meuwissen THE. 2015. Genetic contributions and their optimization. Journal of Animal Breeding and Genetics <u>132(2):</u>89–99. DOI: 10.1111/jbg.12148
- Henryon M, Ostersen T, Ask B, Sørensen AC and Berg P. 2015. Most of the benefits from optimumcontribution selection can be realised with restrictions imposed. Genetics Selection Evolution 2015, 47:21. doi:10.1186/s12711-015-0107-7

Grundy, B., Villanueva, B. and Woolliams, J.A. (2000) Anim. Sci. 70: 373-382

Meuwissen, T.H.E. (1997) J.Anim. Sci. 75:934-940

Meuwissen THE & Sonesson A.1998. J. Anim. Sci. 1998. 76:2575-2583

## Citation

Please cite the following paper, if you use EVA:

Henryon, M., Ostersen, T., Ask, B. Sørensen, AC., Berg, P. Most of the long-term genetic gain from optimum-contribution selection can be realised with restrictions imposed during optimisation. Genet Sel Evol 47, 21 (2015) doi:10.1186/s12711-015-0107-7